

Web Services Reference
Psoda Web Services (PWS) allows you to interface your back-office systems to a Psoda
server, including the public Internet server.
PWS uses a Remote Method Invocation (RMI) model using XML over HTML.

Table of content
Security ... 1
Basic message formats 1

Request messages 1
Response messages 2

Object .. 2
Object details 2
Array .. 3
Boolean ... 2
String ... 3
Error ... 3

Specific request formats 4
Login request .. 4
Object details request 4

Update object details request 5
Method call request 7

An example session 8
Step 1 – Login 9
Step 2 - Request the user’s details: 9
Step 3 – Get the organisation the user
belongs to: .. 9
Step 4 – Get the organisation’s details:
 .. 10
Step 5 – Attempt to update the
organisation details: 10

Security
For security PWS uses a Secure Sockets Layer (SSL) connection which encrypts all
messages between the client application and the Psoda server. This makes it safe to transmit
the messages across the internet without fear of the data contained in the messages being
intercepted by third parties.
To prevent a third-party from injecting extra packets into the data stream Psoda uses a PHP
session ID and also checks the source IP address for requests.
Finally each session is authorised and authenticated using a username and password. The
permissions allocated to that user will determine the data and functionality that will be
available via PWS.

Basic message formats
All requests are initiated by the client similar to HTML requests. For each request the server
will send back a response message containing details of the success or failure of the request.
One HTTP message may contain multiple requests, each with a unique identifier. The HTTP
response will contain a response message corresponding to each request.

Request messages
More than one request can be included in a single HTTP message. All request messages
have the following structure:

<request id=”[request id]” lang=”[language]”>

 …

</request>

The id will be returned as part of the response for this request so it should be unique to allow

requests and responses to be matched up. This can easily be done by using sequential
numbers for each request. The request ID does not have to be a number though so it may
also contain a pre- or postfix.

The lang attribute is optional and can be used to change the language used for human-

readable messages. Subsequent responses will use the same language until the lang

attribute is set for another request. The current options are:
lang description

uk British English

us American English

ja Japanese

cn Simplified Chinese

af Afrikaans

Not all messages have been translated into all of the languages. Where a message is not
available in the selected language the British English version will be used instead.

Response messages
Response message can consist of one or more responses, depending on the number of
requests in the original message. Each response will have the following structure:

<responses>

 <response id=”[request id]”>

 …

 </response>

 …

</responses>

The [request id] corresponds to the identifier used in the original request.

Responses can contain a number of different types:

Object
An object response returns the type and object identifier for the selected object. It has the
following format:

<response id=”[request id]”>

 <object type=”[type]” obj_id=”[obj_id]” />

</response>

The type attribute indicates the type of the object returned and the obj_id indicates the

unique object identifier.

Object details
This response is typically returned when the details of a particular object have been
requested:

<response id=”[request id]”>

 <object_details obj_id=”[obj_id]” name=”[name]”

 type=”[type]” type_string=”[type string]”

 [name1]=”[value1]” [name2]=”[value2]”>

 <attribute name=”[name3]”>

 [long value3 with multiple lines]

 </attribute>

 </object_details>

</response>

The type attribute indicates the type of the object returned and the obj_id indicates the

unique object identifier. The rest of the entries list the attributes of the selected object.

Boolean
A Boolean response basically contains a true/false value:

<response id=”[request id]”>

 <boolean value=”[true|false]”/>

</response>

String
A string response contains a string value in response to the request:

<response id=”[request id]”>

 <string value=”[string value]”/>

</response>

Array
An array response returns a number of results in one response. This is the typical case when
requesting a list of objects. The response has the following structure:

<response id=”[request id]”>

 <array>

 <entry key=”[key_1]”>

 <string value=”[value_1]”/>

 </entry>

 <entry key=”[key_2]”>

 <boolean value=”[true|false]”/>

 </entry>

 <entry key=”[key_3]”>

 <object obj_id=”[obj_id_3]”/>

 </entry>

 <entry key=”[key_4]”>

 <array>

 |

 </array>

 </entry>

 <entry key=”[key_x]” >

 <string value=”[value_x]”/>

 </entry>

 </array>

</response>

Error
An error response to any request will have the following structure:

<response id=”[request id]”>

 <error code=”[error code]” message=”[text message]” />

</response>

In the response message the [request id] corresponds to the identifier of the original

request, [error code] is the Web Services error code and [text message] is a human

readable message corresponding to the error. The [text message] will be presented in the

current Web Services language.

Not logged in

Any requests other than the Login request will fail with a NOT_LOGGED_IN error until the
user has been successfully logged in, for example:

<response id=”[request id]”>

 <error code=”NOT_LOGGED_IN” message=”You have to log in before

you access that area.” />

</response>

Access denied

If the user is logged in but is not allowed to access the requested area then an
ACCESS_DENIED message will be returned, for example:

<response id=”[request id]”>

 <error code=”ACCESS_DENIED” message=”Sorry John, you do not

have the right privileges to access that area.” />

</response>

Server error

Server-side errors will have an error code of SERVER_ERROR, for example:

<response id=”[request id]”>

 <error code=”SERVER_ERROR” message=”Could not connect to

database server.” />

</response>

Specific request formats

Login request
No data access will be allowed until the Web Services has logged in. The login message has
the following structure:

<request id=”[request id]”>

 <login username=”[username]” password=”[password]” />

</request>

A successful response to this request will have the following structure:

<response id=”[request id]”>

 <login_success user_obj_id=”[obj_id]” />

</response>

The response message returns an object with a type of user and an object identifier of

[obj_id]. This object corresponds to the logged in user based on the username and

password passed in the request.

If the login failed then the response will contain an error indicator, for example:

<response id=”[request id]”>

 <error code=”LOGIN_FAILED” message=”No username/password match

in the database. [number] attempts in the last 5 minutes.” />

</response>

A maximum of 3 login attempts are allowed from the same IP address within a 5 minute
window. This prevents brute-force password cracking.

Logout request
Once the transactions have been completed the session can be closed by logging out:

<request id=”[request id]”>

 <logout/>

</request>

A successful response to this request will have the following structure:

<response id=”[request id]”>

 <logout_success/>

</response>

If the session is not logged in yet then the following error will be returned:

<response id=”[request id]”>

 <error code=”NOT_LOGGED_IN” message=”You have to log in before

you access that area.” />

</response>

Object details request
This request is used to retrieve the details of the selected object. The request structure is:

<request id=”[request id]”>

 <get_object_details obj_id=”[obj_id]”/>

</request>

If the user has the correct access to the selected object the response will have the following
structure:

<response id=”[request id]”>

 <object_details obj_id=”[obj_id]” name=”[name]”

 type=”[type]” type_string=”[type string]”

 [name1]=”[value_1]” [name2]=”[value_2]”>

 <attribute name=”[name_3]”>

 [long value3 with multiple lines]

 </attribute>

 </object_details>

</response>

The type attribute indicates the type of the object returned and the obj_id indicates the

unique object identifier. The rest of the entries list the attributes of the selected object.

Object types
The following table lists the current object types supported in Psoda:

Type number Type name

1 Organisation

2 Programme

3 Project

4 Product

5 Release

6 Release note

7 Baseline

8 Requirement

9 Test-case

10 User

11 Group

12 Relationship

13 ACL

14 Test step

15 Comment

16 Attachment

17 Risk

18 Notification

19 Test-run

20 Test-case result

21 Test-step result

22 Action

23 Change request

24 Issue

25 Report template

26 Report parameter

27 Defect

28 Workflow

29 Workflow state

30 Workflow transition

31 Feature

32 Milestone

Type number Type name

33 Sub-project

34 Budget group

35 Budget item

36 Expense item

37 Task group

38 Task

39 Timesheet

40 Timesheet task

41 Benefit

42 Role

43 Holiday calendar

44 Leave application

45 Holiday

46 Dependency

47 Folder

48 Evaluation

49 Evaluation result

50 Vendor

51 Portfolio

52 Indicator

53 Indicator value

54 Material

55 Workflow action

56 Lesson

57 Whiteboard

58 Contract

59 Custom field

60 Exception

61 Assumptions

62 Decision

Lock object request
This request is used to lock the selected object before updating. The request structure is:

<request id=”[request id]”>

 <lock_object obj_id=”[obj_id]”/>

</request>

If the user has the correct access to the selected object the response will have the following
structure:

<response id=”[request id]”>

 <object_locked obj_id=”[obj_id]”/>

</response>

The object will remain locked until it is unlocked using the unlock_object request below or

up to 15 minutes after the last API interaction.

If the object is already locked by another user then the error response will have this structure:

<response id=”[request id]”>

 <error code=”ALREADY_LOCKED” obj_id=”[obj_id]”

 message=”[object type] [object name] is already locked

for editing by [lock holder first name] [lock holder last name]”

</response>

Unlock object request
This request is used to unlock the selected object after updating. The request structure is:

<request id=”[request id]”>

 <unlock_object obj_id=”[obj_id]”/>

</request>

If the request was successful the response will have the following structure:

<response id=”[request id]”>

 <object_unlocked obj_id=”[obj_id]”/>

</response>

If the object was not locked by this API user account then the error response will have this
structure:

<response id=”[request id]”>

 <error code=”NOT_LOCKED” obj_id=”[obj_id]”

 message=”[object type] [object name] is not currently

locked by you”/>

</response>

Update object details request
This request is used to update the details of the selected object. Before you can update an
object’s details you have to lock it using the lock_object request above.

The request structure is:

<request id=”[request id]”>

 <update_object_details obj_id=”[obj_id]”

 [name1]=”[value_1]” [name2]=”[value_2]”>

 <attribute name=”name_3”>

 [long value3 with multiple lines]

 </attribute>

 </update_object_details>

</request>

A successful response will contain all the attributes that were updated:

<response id=”[request id]”>

 <object_updated obj_id=”[obj_id]”>

 <attribute name=”[name_1]” value=”[value_1]”/>

 <attribute name=”[name_2]”>

 [long value with multiple lines]

 </attribute>

 <attribute name=”[name 3]” error=”Value out of range”/>

 .

 .

 .

 <attribute name=”[name_n]” value=”[value_n]”/>

 </object_updated>

 .

 .

 .

</response>

If other objects are updated as a consequence of this update request then there will be one
<object_updated> section for each of those other objects.

If the object was not locked by this API user account then the error response will have this
structure:

<response id=”[request id]”>

 <error code=”NOT_LOCKED” obj_id=”[obj_id]”

 message=”[object type] [object name] is not currently

locked by you”/>

</response>

Delete object request
This request is used to delete the selected object. Before you can delete an object you have
to lock it using the lock_object request above.

The request structure is:

<request id=”[request id]”>

 <delete_object obj_id=”[obj_id]”/>

</request>

A successful response will contain all the attributes that were updated:

<response id=”[request id]”>

 <object_deleted obj_id=”[obj_id]”/>

</response>

If the object was not locked by this API user account then the error response will have this
structure:

<response id=”[request id]”>

 <error code=”NOT_LOCKED” obj_id=”[obj_id]”

 message=”[object type] [object name] is not currently

locked by you”/>

</response>

Create object request
This request is used to create a new object.

The request structure is:

<request id=”[request id]”>

 <create_object parent_obj_id=”[parent_obj_id]” type="[type]"

 [name1]=”[value_1]” [name2]=”[value_2]”>

 <attribute name=”name_3”>

 [long value3 with multiple lines]

 </attribute>

 </create_object>

</request>

A successful response will contain the obj_id for the newly created object:

<response id=”[request id]”>

 <object_created obj_id=”[obj_id]”/>

 .

 .

</response>

If the object could not be created then an error response is returned:

<response id=”[request id]”>

 <error code=”NOT_CREATED”

 message=”[error message]”/>

</response>

Method call request
This request calls a specific method on the selected object:

<request id=”[request id]”>

 <call obj_id=”[obj_id]” method=”[method name]”>

 <parameter name=”[name_1]” value=”[value_1]”/>

 <parameter name=”[name_2]” value=”[value_2]”/>

 <parameter name=”[name_t]” value=”[value_t]”/>

 </call>

</request>

The required parameters and the response message will depend on the specific method
being called. Please refer to the method reference later on in this reference guide.

File upload requests
The following requests can be used to upload an attachment to Psoda.

To start the file upload send the following request:

<request id=”[request id]”>

 <start_file_upload obj_id=”[destination obj_id]”

 filename=”[file name]”

 mimetype=”[mime type]”

 filesize=”[file size in bytes]”

 blob=”[1st portion of file base64 encoded]”>

 </start_file_upload>

</request>

The API user will need access to create new attachments on the destination object. The
response will look like this:

<response id=”[request id]”>

 <file_upload_started file_id=”[file_id]”

 bytes_written="[bytes written]"/>

</response>

If the file is less than 8KBytes then it can be uploaded in this single request. Bigger files has
to be split into multiple portions and subsequent portions can be uploaded using the following
request:

<request id=”[request id]”>

 <continue_file_upload file_id=”[file_id]”

 blob=”[next portion of file base64 encoded]”>

 </continue_file_upload>

</request>

The response will be:

<response id=”[request id]”>

 <file_upload_continued file_id=”[file_id]”

 bytes_written="[bytes written for the last request]"/>

 total_bytes_written="[total bytes written]"/>

</response>

Once the complete file has been written to disk, i.e. total bytes written = file size, then the
attachment is created and the final response will be:

<response id=”[request id]”>

 <file_upload_completed attachment_obj_id=”[obj_id]”

 bytes_written="[bytes written for the last request]"/>

 total_bytes_written="[total bytes written]"/>

</response>

In this response the attachment_obj_id is the object ID for the newly created attachment.

An example session
The following sequence shows how an example session may progress.

Step 1 – Login
<request id=”1”>

 <login username=”joebloggs” password=”forgetmenot” />

</request>

The login was successful:

<response id=”1”>

 <object type=”user” obj_id=”4352” />

</response>

Step 2 - Request the user’s details:
<request id=”2”>

 <object_details obj_id=”4352”/>

</request>

The user’s details are returned:

<response id=”2”>

 <object_details type=”user” obj_id=”4352”>

 <attribute name=”username” value=”joebloggs”/>

 <attribute name=”firstname” value=”Joe”/>

 <attribute name=”lastname” value=”Bloggs”/>

 |

 <attribute name=”logged_in” value=”true”/>

 </object_details>

</response>

Step 3 – Get the user’s organisation:
The user object is a child of the organisation object, so we are requesting the parent of the
user object. The getParent() method does not have any parameters.

<request id=”3”>

 <call obj_id=”4352” method=”getParent”/>

</request>

The response contains the organisation’s object identifier, 53:

<response id=”3”>

 <object type=”organisation” obj_id=”53” />

</response>

Step 4 – Get the organisation’s details:
Use the organisation’s object identifier, 53, to request all of the details of the organisation:

<request id=”4”>

 <object_details obj_id=”53”/>

</request>

The organisation’s details are returned:

<response id=”4”>

 <object_details type=”organisation” obj_id=”53”>

 <attribute name=”name” value=”DemoOrg”/>

 <attribute name=”address”>

 15 Long Avenue

 Newtown

 Metropolis

 </attribute>

 <attribute name=”country” value=”USA”/>

 |

 <attribute name=”fax” value=”+1 234 567 1235”/>

 </object_details>

</response>

Step 5 –Update the organisation details:
<request id=”5”>

 <update_object_details obj_id=”53”>

 <attribute name=”name” value=”Acme”/>

 <attribute name=”address”>

 16 Long Avenue

 Newtown

 Metropolis

 </attribute>

 </update_object_details>

</request>

This user does not have permission to change the organisation’s details:

<response id=”5”>

 <error code=”ACCESS_DENIED” message=”Sorry Joe, you do not have

the right privileges to access that area.” />

</response>

